The Hydrothermal Synthesis of BaTiO₃ Fine Particles from Hydroxide–Alkoxide Precursors

S. Urek^{*a*} & M. Drofenik^{*b*}

^{*a*}University of Maribor, Maribor, Slovenia ^{*b*}Jozef Stefan' Institute, Ljubljana, Slovenia

(Received 26 March 1997; accepted 3 July 1997)

Abstract

Fine powders of barium titanate were synthesized hydrothermally from aqueous barium acetate or barium hydroxide and titanium ethoxide solution, with different alkaline media; ammonia, hydrazine and tetramethylammonium hydroxide. Barium titanate powder prepared from $Ba(OH)_2$ after synthesis shows $BaCO_3$ impurities. On the other hand, powders prepared from $Ba(CH_3COO)_2$, $Ti(OC_2H_5)_4$ and tetramethylammonium hydroxide exhibit the smallest average grain size and did not contain BaCO₃ impurities. However, a relative by large amount of organic disintegration products which delay the sintering process were identified in the $BaTiO_3$ powders from Ba acetate. The BaTiO_3 powders were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), thermogravimetric analysis (TGA), mass spectroscopy and dilatometric analyses. © 1998 Published by Elsevier Science Limited.

1 Introduction

The preparation of fine ceramic powders has become an important part of modern ceramic research. There is a strong trend toward the application of chemical methods for powder synthesis in electronic ceramics. In spite of a cost which is initially higher than powders prepared by conventional solid-state reaction of mechanically mixed and calcined materials, chemical methods, due to their improved performance and reproducibility, can save money and add value. There are various methods of fine powder preparation, including coprecepitation, spray drying, freeze drying, solgel and hydrothermal processes. Among these methods the hydrothermal process is very promising. It is a typical build-up method, where fine particles are preformed from much smaller particles, such as clusters, molecules, ions and atoms. With ever increasing energy costs, hydrothermal synthesis could possibly become very attractive for fine powder preparation because of the low temperatures involved and the good sinterability of the synthesized powder. The superiority of this process in respects such as the improved control of powder homogeneity and particle uniformity, could make its use dominant for electronic ceramics in the future.^{1,2}

Barium titanate has been used for more than forty years as a basic material for electronic ceramics such as, for example, ceramic capacitors, multilayer capacitors and PTCR (positive temperature coefficient of resistivity) devices and others. The final microstructure and electrical properties of BaTiO₃ depend greatly on the powder characteristics. For this reason, many investigations were carried out on chemical synthesis of BaTiO₃ powders. Hydrothermal synthesis has been found to be a very promising route for preparation of well optimized and non-agglomerated powders.

In the beginning the hydrothermal synthesis of $BaTiO_3$ was performed at relatively elevated temperatures of 380–500°C and pressures of 300–500 atm.³

However, later the synthesis temperatures were drastically decreased to 85°C at equilibrium water vapour pressure (15-65 atm).⁴⁻⁶ In general the hydrothermal method has the potential for producing extremely fine particles with high crystallinity, high purity and narrow size distribution. In this method an aqueous $Ba(OH)_2$ solution with suspended TiO_2 fine particles is hydrothermally treated and BaTiO₃ is formed through the dissolution-deposition route; i.e. Ba(OH)₂ reacts with titania under hydrothermal conditions to form BaTiO₃. During this process the concentrations of cations and hydroxide must increase to the supersaturation range where the nucleation products are stable.⁷ Then the monodispersed grains are formed by subsequent uniform growth on the existing nuclei, which were provided by adsorption of solute species, agglomeration and Ostwald ripening.⁷ Thus, the dissolution of TiO₂ particles affects the supersaturation range, the nucleation and the growth of BaTiO₃ particles. The dissolution rate of titania and its constitution⁸ to a great extent governs the formation of BaTiO₃ monodispersed grains. However, once the nuclei of BaTiO₃ from the supersaturation solution are formed, the aqueous suspension is only stable under strongly alkaline conditions at $pH \ge 13$. Otherwise, due the thermodynamic instability of BaTiO₃ in water complete decomposition of BaTiO₃ to TiO₂ and $Ba(OH)_2$ can be expected. In practice, however, usually thin but water-impermeable layers of TiO₂ are formed on the surface of BaTiO3 particles which prevents the BaTiO₃ grains from complete disintegration. In an aqueous suspension of hydrothermally processed BaTiO₃ particles dramatic Ba leaching is expected due to the higher surface area of smaller sized grains.

In this work we studied the processing of fine $BaTiO_3$ particles by hydrothermal synthesis of aqueous suspensions prepared from $Ba(OH)_2$ and $Ba(CH_3COO)_2$ salts and $Ti(OC_2H_5)_4$ with various organic hydroxides.

2 Experimental procedure

2.1 Preparation of barium titanate fine particles from Ba(OH)₂ precursor

Stock solutions containing Ba^{2+} and Ti^{4+} ions were prepared using $Ba(OH)_2*8H_2O$ (98% min., Alfa) and $Ti(OC_2H_5)_4$ (Alfa) as source materials. An appropriate amount of $Ba(OH)_2*8H_2O$ was dissolved in deionized water; the concentration of $Ba(OH)_2*8H_2O$ in all experiments was 1.1 mol litre⁻¹. Also an appropriate amount of $Ti(OC_2H_5)_4$ was diluted in abs. ethanol. The solutions of $Ba(OH)_2*8H_2O$ and $Ti(OC_2H_5)_4$ were mixed with different bases (NH₄OH, N₂H₅OH, (CH₃)₄NOH (TMAH)) in order to prepare suspensions with the desired pH values.

When the desired pH value of the suspension had been obtained, the Teflon cup with the suspension was mounted in an autoclave (Model 4563M, Parr Instrument Co., Moline, IL) and heated at a rate of 3° C min⁻¹. Hydrothermal syntheses were conducted at temperatures of 150°C for 2 h. Table 1 shows the sample code, type of precursor used and the final pH values of suspensions, prior to hydrothermal synthesis.

After hydrothermal treatment, the pressure vessel was cooled and the product was washed free of organic radicals with boiling water, ethanol and methanol.

Fable 1.	Sample	code,	type	of pi	ecurs	sors	used	and	the	final
pH val	ues of su	Ispensi	ons,	prior	to hy	drot	herm	al sy	nthe	sis

Sample code	Precursors	pH of suspension
BT	$Ba(OH)_2$ and $Ti(OC_2H_5)_4$	13.0
BTA	$Ba(OH)_2$, $Ti(OC_2H_5)_4$ and NH_4OH	13.4
BTH	$Ba(OH)_2$, $Ti(OC_2H_5)_4$ and N_2H_5OH	13.4
BTT	Ba(OH) ₂ , Ti(OC ₂ H ₅) ₄ and (CH ₃) ₄ NOH	13.9

2.2 Preparation of barium titanate fine particles from Ba(CH₃COO)₂ precursor

Preparation of BaTiO₃ fine particles from Ba(CH₃COO)₂ (Alfa) and Ti(OC₂H₅)₄ (Alfa) was possible only when (CH₃)₄NOH (TMAH) was added as an alkaline medium. Stock solutions containing Ba²⁺ and Ti⁴⁺ ions were prepared using Ba(CH₃COO)₂, which was dissolved in deionized water at a concentration of 1·1 mol litre⁻¹ and the appropriate amount of Ti(OC₂H₅)₄ was diluted in abs. ethanol. TMAH as suspension medium was added to the reaction mixture to maintain the pH value during the reaction.

When the desired pH value was obtained, the Teflon cup was mounted in an autoclave and heated at a rate of 3° C min⁻¹. The hydrothermal syntheses were conducted at temperatures of 100, 150 and 230°C for 2 h.

After hydrothermal treatment, the pressure vessel was cooled and the product was washed free of organic contaminants with boiling water, ethanol and methanol.

2.3 Powder characterization

Particle size determination was performed using Xray diffraction spectroscopy (XRD). Scanning electron microscopy (SEM) (Model JXA-840, JOEL, Tokyo, Japan) was used to observe the morphology of the powder. The gases evolved during heating of the powders were analyzed by mass spectroscopy. Thermogravimetric analysis (TGA) (Model STA 409, Netzsch, Inc., Exton, PA) was conducted in an air atmosphere at a heating rate of 5°C min⁻¹.

Green compacts of dimensions h=5 mm and $\phi = 6 \text{ mm}$ were obtained by pressing dry powder at 500 MPa; the green density of compacts was around 50% of theoretical density. The sintering of compacts was inspected by measuring shrinkage, and shrinkage rate spectra obtained by the use of a dilatometer (BÄHR–Gerätebau GmbH). The samples were sintered in a tube furnace at temperatures between 1250 and 1350°C for 2 h in air. The density of sintered samples was determined by Archimedes method. The microstructure of sintered samples was inspected by SEM on polished and thermally etched samples.

Fig. 1. Change in pH value with (Me/OH) ratio for suspensions prepared from $Ba(OH)_2 + Ti(OC_2H_5)_4 + hydroxide$ $(NH_4OH, N_2H_5OH, (CH_3)_4NOH)$, where (Me) is the total concentration of metal ions and OH is the concentration of hydroxyl ion.

3 Results and Discussion

The pH value of the starting suspension and consequently the aqueous suspension of already formed BaTiO₃ nuclei after the hydrothermal synthesis are very important for the successful preparation of BaTiO₃ grains. After the formation of BaTiO₃ nuclei from supersaturated solution, the aqueous suspension of formed nuclei is stable only when the pH value exceeds 13.

The calculation of stability diagrams outlining that successful processing of $BaTiO_3$ required at least a pH > 12.⁹

3.1 Preparation of barium titanate fine particles from Ba(OH)₂

Figure 1 shows the pH values of the suspension formed when a stoichiometric amount of $Ti(OC_2H_5)_4$ and various amounts of different hydroxides, i.e. NH₄(OH), N₂H₅(OH) and (CH₃)₄NOH, were added to an aqueous solution of Ba(OH)₂.

According to the diagrams in Fig. 1, all the tested suspensions at (Me/OH) ratio <0.16 show a sufficiently high pH value needed for the formation of a stable aqueous suspension of BaTiO₃ nuclei after synthesis. The suspension prepared by various hydroxides with a pH > 13 were hydrothermally treated at 150°C for 2 h. A typical TEM image of a synthesized powder and the corresponding electron diffraction is shown in Fig. 2.

The crystallite size of $BaTiO_3$ was estimated by the Scheerer eqn (1):

$$d_x = \frac{0.94\lambda}{\beta\cos\Theta} \tag{1}$$

where d_x is the crystallite size, λ (1.5406) is the wavelength, β is the true half-peak width and is

Fig. 2. Typical TEM image and electron diffraction of BaTiO₃ powder prepared from Ba(OH)₂ precursor. Syntheses were performed at 150°C for 2 h.

half the diffraction angle of the centre of the peak (in degrees). The (200) peak was used to calculate the crystallite size. The XRD pattern in Fig. 3, besides BaTiO₃, also shows diffraction peaks which belong to BaCO₃. On leaching of the synthesized powders with diluted HNO₃ the amount of BaCO₃ can be decreased down to a level where BaCO₃ can no longer be detected by the XRD pattern. The morphological parameters of the synthesized powders are given in Table 2. The average particle size $(d_{(200)})$ of powders prepared from Ba(OH)₂ is similar irrespective of the hydroxide used during the syntheses. The crystallite size of $BaTiO_3$ obtained from the Scheerer equation is in general lower than that calculated from d_{BET} values. We believe that powders prepared from Ba(OH)₂ as precursor form hard agglomerates which consequently leads to a lower apparent specific surface area and thus to higher calculated particle size $(d_{\text{BET}}).$

Fig. 3. X-ray powder diffraction patterns of nanosized BaTiO₃ powders, prepared from various hydroxides; a) BT, b) BTA, c) BTH and d) BTT.

Table 2. Specific surface area (A), average grain size, estimated from the X-ray diffraction peak (d_x) and average grain size (d_{BET}) estimated from the specific surface area by the use of the relation $d = 6/A\rho$, where A is the specific surface area and ρ is the theoretical density of BaTiO₃ (6.05 g cm⁻³)

Sample code	A $(m^2 g^{-1})$	$d_x (nm)$	d _{BET} (nm)
BT	22.2	20.8	44.9
BTA	20.0	20.3	49.8
BTH	32.6	19.0	30.5
BTT	24.3	20.7	41.0

One of the reasons for the formation of hard agglomerates could be the presence of excess $Ba(OH)_2$ in the synthesized powders. Namely, $BaCO_3$ detected in the synthesized powders must be formed during processing. The starting $Ba(OH)_2$ solution used was filtered and did not contain $BaCO_3$ impurities. So during the hydrothermal synthesis retained $Ba(OH)_2$ can absorb CO_2 and form $BaCO_3$, which might contribute to the formation of strong agglomerates, thus decreasing the apparent specific surface area of the powders.

Figure 4 shows the mass spectra of these powders. Besides CO_2 the main disintegration products NO, CO and H_2O can be detected, though in much smaller amounts. Since the majority of organic compounds formed during hydrothermal synthesis are soluble and were leached out of the final hydrothermally treated suspension, the main disintegration product CO₂ identified at 800°C must come from BaCO₃ present in the synthesized powder, as indicated by the XRD pattern. From the TGA of powders (Fig. 5) it can be noted, that the amount of CO₂ released and the amount of BaCO₃ present in the synthesized powders decrease with increase in the pH value of the starting suspension (an exception is powder BT prepared without organic bases).

Fig. 5. TG analyses of BaTiO₃ powders obtained by hydrothermal synthesis: a) BT, b) BTA, c) BTH and d) BTT.

Since the preparation procedure of all powders was identical and the same stock solution of Ba(OH)₂ was used, we can assume that the decrease of the amount of CO₂ released from BaTiO₃ powders synthesized at higher pH value is due to less effective synthesis at lower pH values. The Ba(OH)₂ retained after hydrothermal treatment can easily be converted to BaCO₃ which can then be identified by mass spectroscopy and TGA. The stoichiometry of BaTiO₃ was maintained after the chemical analysis and an adequate change in the starting composition was made. The composition was kept constant close to Ti/Ba ≥ 1 (BaO/TiO₂ ≈ 1.02).

The relative shrinkage spectra of samples BT, BTA, BTH and BTT showed a maximum between 800 and 900°C. The dilatometric curves of the samples are shown in Fig. 6.

The compacts prepared by pressing $BaTiO_3$ powder at 500 MPa with a green density of about 50% theoretical density were sintered at 1350°C for

Fig. 4. Mass spectra of various BaTiO₃ powders prepared from different organic bases.

Fig. 6. Shrinkage rate spectra of samples a) BT, b) BTA, c) BTH and d) BTT.

Table 3. Sintered density (ρ), relative density (T.D.) and average grain size *D* of samples sintered at 1300°C (2h)

Sample code	ρ (g cm ⁻³)	T.D. (%)	D (μm)
BT	5.7	94.2	3.5
BTA	5.8	95.9	4.3
BTH	5.6	92.6	3.3
BTT	5.8	95.9	4.5

2h. Table 3 shows the densities and average grain size of sintered samples, and typical microstructure of a sintered sample is shown in Fig. 7.

The hydrothermal synthesis of BaTiO₃ in strong alkaline media of Ba(OH)₂ and various ammoniabased hydroxides yielded fine grained BaTiO₃ powders which sinter to relative high density, depending on the hydroxide used during the preparation of the alkaline suspension. However, usually an excess of BaCO₃ accompanies the synthesis of BaTiO₃, which in the case of Ba/Ti > 1, converts to the Ba₂TiO₄ during sintering and can deteriorate the microstructure as well known. Otherwise, when the Ba/Ti ratio was kept < 1, no significant influence

Fig. 7. Typical microstructure of a sample sintered at 1350° C, prepared from powder synthesized with Ba(OH)₂, Ti(OC₂H₅)₄ and TMAH precursors at a temperature of 150° C for 2 h.

Fig. 8. pH value versus Me/OH ratio for suspensions prepared from Ba(CH₃COO)₂, Ti(OC₂H₅)₄ and (CH₃)₄NOH.

on microstructure formation could be noted. By the use of $Ba(OH)_2$ as precursor it is relatively easy to achieve the needed alkalinity to stabilise the $BaTiO_3$ nucleus during synthesis; however elimination of the additional $BaCO_3$ byproduct can be demanding and needs a careful experimental work.

3.2 Preparation of barium titanate fine particles from Ba(CH₃COO)₂

Figure 8 shows the pH values of a suspension prepared from Ba(CH₃COO)₂, Ti(OC₂H₅)₄ and (CH₃)₄NOH as a function of the ratio between the total molality of the metal ions and the (OH⁻) concentration. When the Me/OH ratio exceeds the value of 0.62, the pH value of the suspension exceeds \geq 13, where the formation of BaTiO₃ can proceed. All other organic bases tested did not sufficiently increase the pH value of the suspension. Suspensions with pH > 13 were hydrothermally treated at temperatures of 100, 150 and 230°C for 2 h. A typical TEM image of a synthesized powder with its corresponding diffraction pattern is shown in Fig. 9(a). Powders obtained from Ba(CH₃COO)₂

Fig. 9. (a) XRD patterns and (b) typical TEM image for a sample prepared from $Ba(CH_3COO)_2$, $Ti(OC_2H_5)_4$ and TMAH.

Table 4. Sample code, temperature of hydrothermal synthesis T_S , specific surface area (A), average grain size, estimated from the X-ray diffraction peak (d_x), average grain size (d_{BET}) estimated from the specific surface area and sintered density (ρ)

Sample code	$T_{S}(^{\circ}C)$	A $(m^2 g^{-1})$	$d_x (nm)$	d _{BET} (nm)	ρ (g cm ⁻³)
AET1	100	241	19.4	4.0	5.1
AET2	150	253	19.9	3.9	5.2
AET3	230	151	19.3	6.6	5.3

and $Ti(OC_2H_5)_4$ as precursors exhibited a fine particle size. No difference in particle size between powders synthesized at different temperatures could be noted from TEM images and XRD peak broadening $(d_{(200)})$, Table 4. However, when we calculate d_{BET} and assume a spherical shape, somewhat different values deviating by a factor of 3 from those obtained from the Scheerer method were achieved (Table 4). The much smaller average particle size d_{BET} calculated for these powders is due to the large measured specific surface areas of these powders. The relatively high amount of very fine disintegration products which could not be completely eliminated from the synthesized powder, and are deposited on the particle surface, increase the specific surface area determined by the BET method. For these reason, the calculated d_{BET} value is overestimated and the corresponding calculated d_{BET} is smaller than the $d_{(200)}$. At higher synthesis temperatures, when the concentration of organic disintegration products is lower, as can be observed from TG analysis, (Fig. 10), the measured specific surface area (A) is also lower and the corresponding calculated d_{BET} is larger. Powder a) synthesized at 230°C, for example, has a 100% lower weight loss in comparison to powder c) synthesized at 100°C.

Mass spectrometry indicates that the main disintegration products below 600°C are H₂O, CO₂, CO, NO, N₂O, amines and some organic radicals with masses of 28, 32, 43 and 44 g mol⁻¹. The main disintegration is at a temperature around 150°C,

Fig. 10. TG analyzes of synthesized powders at a) 230°C, b) 150°C and c) 100°C.

when the decomposition of the base TMAH began.⁵ At elevated temperatures $> 600^{\circ}$ C CO represents the main disintegration product.

Since no BaCO₃ could be detected by XRD (Fig. 9(b)) and no CO₂ release could be detected by mass spectrometry above 600° C where BaCO₃ starts to disintegrate, we concluded that the amount of BaCO₃ present in BaTiO₃ was below the detection limit. The shrinkage rate spectrum of this powder is different from the other powders prepared from Ba(OH)₂ as precursor. Besides a small peak at 800°C, the analysis of these powders show a larger peak at about 1300°C.

This powder has the smallest average grain size of all the powders synthesized during this work. Namely, synthesis of BaTiO₃ from Ba(CH₃COO)₂ and $Ti(OC_2H_5)_4$ precursors and TMAH as base results in the formation of amines, esters and organic radicals of relatively large molecules which stabilize the fine particles through the steric effect¹⁰ of surface adsorbed molecules. This stabilization of fine particles during synthesis is very effective and an increase of the digestion temperature by more than 100% does not increase the average crystallite size during syntheses (Table 4). However, on the other hand, these large organic molecules cannot easily be eliminated and washed out of the large surface of the fine grained powder. TGA confirms the release of relatively large amount of organic impurities, which disintegrate up to 800°C in air. The weight losses decrease as the synthesis temperatures of the powders increase. At higher temperature the large organic molecules split into smaller parts which can be more easily eliminated during washing the powder. The mass spectra in Fig. 11 confirm the presence of organic impurities.

At temperatures around 750°C the release of CO was detected. We believe that CO is a product of incomplete oxidation of residual carbonized organic products. The relatively high amount of organic compounds, which cannot be completely removed during washing the synthesized powder, are deposited on the surface of BaTiO₃ grains and disintegrate during heating. Due to the limited access of oxygen to the carbonized disintegration products located on the grain boundary of a partially densified sample, carbon monoxide is formed, and can be detected by mass spectroscopy above 600° C (Fig. 11). Since direct contacts

Fig. 11. Mass spectra of BaTiO₃ powder AET2 synthesized at 150° C.

between grains are most probably prevented during an early stage of sintering due to disintegration products which are deposited on the grain boundary, the sintering process is very much delayed, as can be seen from the shrinkage rate spectra in Fig. 12.

The preparation of $BaTiO_3$ from $Ba(CH_3COO)_2$ as precursor is advantageous since the presence of

Fig. 12. (a) Shrinkage rate spectra and (b) dilatometric curves of hydrothermally prepared powders of BaTiO₃ synthesized at different temperatures a) 100°C (AET1), b) 150°C (AET2) and c) 230°C (AET3).

Fig. 13. Typical microstructure of a sample sintered at 1250°C, prepared from powder synthesized with Ba(CH₃COO)₂, Ti(OC₂H₅)₄ and TMAH precursors at a temperature of 230°C for 2 h, $\rho = 5.3$ g cm⁻³.

BaCO₃ in the synthesized powders can be effectively prevented due the lower affinity of Ba(CH₃COO)₂ for atmospheric CO_2 in comparison to that of $Ba(OH)_2$. However, of all the bases we tested, only TMAH was found to be sufficiently strong to maintain a suspension pH > 13, which stabilizes the aqueous suspension of BaTiO₃ nuclei during synthesis. Besides, the relatively large molecules of byproducts formed during digestion assist the formation of fine particles due to the steric effect. On the other hand, the powder obtained is less reactive due to the relatively larger amount of organic products which cover the grain surface and prevent contacts of grains during the early stage of sintering. Figure 13 shows a typical microstructure of a sample prepared from powder sintered at 1250°C.

4 Conclusions

The preparation of BaTiO₃ powders from hydroxide-alkoxide precursors is appropriate for the synthesis of nanocrystalline powder. Ba-hydroxide and Ti-ethoxide as precursors with addition of different alkaline media lead to the preparation of nanosized powder containing a certain amount of BaCO₃ which can deteriorate the microstructure of BaTiO₃ during sintering. However, during the synthesis of BaTiO₃ powder from Ba-acetate, Ti-ethoxide and TMAH, no BaCO₃ could be detected and powders with a higher specific surface can be prepared. Nanocrystalline powder prepared from Ba-acetate, Ti-ethoxide and TMAH contain a significant amount of organic impurities which are deposited on the grain surface, and retard the onset of sintering. An increase of synthesis temperature improves the sinterability of the powder; however, in general the powder prepared from Ba(CH₃COO)₂ and TMAH base exhibits a shrinkage rate maximum above 1200°C.

References

- 1. Dawson, D. W., Hydrothermal synthesis of advanced ceramic powders. *Cer. Bull.*, 1988, **67**(10), 1673–1678.
- 2. Komarneni, S., Ray, R., Brevel, E., Ollinen, M. and Suwa, Y., Hydrothermal route to ultrafine powders utilizing single and diphasic gels. *Adv. Ceram. Mat.*, 1986, 1(1), 87–92.
- Christensen, A. N., Hydrothermal preparation of barium titanate by transport reactions. *Acta Chem. Scan.*, 1970, 24, 2447–2452.
- Vivekanandan, R. and Kutty, T. R. N., Hydrothermal synthesis of Ba(Ti, Sn)O₃ fine powders and dielectric properties of the corresponding ceramics. *Ceram. Inter.*, 1988, 14, 207–216.
- 5. Hennings, D., Rosenstein, G. and Schreinemacher, H., Hydrothermal preparation of barium titanate from

barium-titanium acetate gel precursors. *Journal of the European Ceramic Society*, 1991, **8**, 107–115.

- 6. Fukai, K., Hidaka, K., Aoki, M. and Abe, K., Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. *Cer. Inter.*, 1990, **16**, 285–290.
- La Mer, V. K. and Dinegar, R. H., Theory, production and mechanism of formation of monodispersed hydrosols. *J. Am. Chem. Soc.*, 1950, **72**(11), 4847–4854.
- 8. Kumazawa, H., Annen, S. and Sada, E., Hydrothermal synthesis of barium titanate fine particles from amorphous or crystalline titania. *J. Mat. Sci.*, 1995, **30**, 4740–4744.
- 9. Lencka, M. M. and Riman, R. E., Thermodynamic modelling of hydrothermal synthesis of ceramic powders. *Chem. Mater.*, 1993, **5**, 61–70.
- Vivekanandan, R., Philip, S. and Kutty, T. R. N., Hydrothermal preparation of Ba(Ti, Zr)O₃ fine powders. *Mat. Res. Bull.*, 1986, 22, 99–108.